Ag xtr 28: Teros 12 sensor reading
Basic example that turns on, reads and turn off the sensor. Measured parameters are stored in the corresponding class variables and printed by the serial monitor.
Required Materials
- 1 Waspmote Plug & Sense! Smart Agriculture Xtreme - 1 Teros 12
Notes
- This example is only valid for Waspmote v15
Code
/*
---------- - [Ag_xtr_28] - Teros 12 sensor reading --------------------
Explanation: Basic example that turns on, reads and turn off the
sensor. Measured parameters are stored in the corresponding class
variables and printed by the serial monitor.
Measured parameters:
- Electrical conductivity
- Volumetric water content
- Temperature of the soil
Copyright (C) 2020 Libelium Comunicaciones Distribuidas S.L.
http://www.libelium.com
This program is free software: you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see < http : //www.gnu.org/licenses/>.
Version : 3.1
Design : David Gascón
Implementation : A.Falo
*/
#include <WaspSensorXtr.h>
/*
SELECT THE RIGHT SOCKET FOR EACH SENSOR.
Possible sockets for this sensor are:
- XTR_SOCKET_A _________
- XTR_SOCKET_B |---------|
- XTR_SOCKET_C | A B C |
- XTR_SOCKET_D |_D__E__F_|
Example: a 5TM sensor on socket A will be
[Sensor Class] [Sensor Name] [Selected socket]
Decagon_5TM mySensor (XTR_SOCKET_A);
Refer to the technical guide for information about possible combinations.
www.libelium.com/downloads/documentation/smart_agriculture_xtreme_sensor_board.pdf
*/
// [Sensor Class] [Sensor Name] [Selected socket]
Meter_TEROS12 mySensor(XTR_SOCKET_A);
void setup()
{
USB.println(F("Teros 12 example"));
}
void loop()
{
// 1. Turn ON the sensor
mySensor.ON();
// 2. Read the sensor
/*
Note: read() function does not directly return sensor values.
They are stored in the class vector variables defined for that purpose.
Values are available as a float value
*/
mySensor.read();
// 3. Turn off the sensor
mySensor.OFF();
// 4.1 Conversion of the RAW output sensor value into Volumetric Water Content (VWC)
// for mineral soil using calibration equation
float VWC = ((3.879 * pow(10, -4) * mySensor.sensorTEROS12.calibratedCountsVWC)) - 0.6956;
// for soilless media using calibration equation
// float VWC = ((6.771 * pow(10, -10) * pow(mySensor.sensorTEROS12.calibratedCountsVWC, 3))
// - (5.105 * pow(10, -6) * pow(mySensor.sensorTEROS12.calibratedCountsVWC, 2))
// + (1.302 * pow(10, -2) * mySensor.sensorTEROS12.calibratedCountsVWC))
// - 10.848;
// 4.2 Conversion of the RAW output sensor value into Volumetric Water Content (VWC)
// for mineral soil using calibration equation
float DP = pow(((2.887 * pow(10, -9) * pow(mySensor.sensorTEROS12.calibratedCountsVWC, 3))
- (2.080 * pow(10, -5) * pow(mySensor.sensorTEROS12.calibratedCountsVWC, 2))
+ (5.276 * pow(10, -2) * mySensor.sensorTEROS12.calibratedCountsVWC)
- 43.39), 2);
// 5. Print information
USB.println(F("---------------------------"));
USB.println(F("Teros-12"));
USB.print(F("Dielectric Permittivity: "));
USB.printFloat(DP, 2);
USB.println();
USB.print(F("Volumetric Water Content: "));
USB.printFloat(VWC, 2);
USB.println(F(" m3/m3"));
USB.print(F("Electrical Conductivity: "));
USB.printFloat(mySensor.sensorTEROS12.electricalConductivity, 0);
USB.println(F(" dS/m"));
USB.print(F("Soil temperature: "));
USB.printFloat(mySensor.sensorTEROS12.temperature, 1);
USB.println(F(" degrees Celsius"));
USB.println(F("---------------------------\n"));
delay(5000);
}
Last updated