Frame structure
Last updated
Last updated
The Waspmote Frame was designed in order to create sensor data frames with a specific format. This data protocol is supported by Meshlium (Meshlium can decode these data frames), so this is the format to be used in order to transmit data to Meshlium.
There are two kinds of frames: ASCII and Binary.
Besides, a special frame format was designed in order to send sensor data via low bit-rate protocols with short payload sizes. This frame type is called 'Tiny' frame. The user must keep in mind that this protocol is not integrated into Meshlium (in fact, this frame type is mainly designed for constrained radios like Sigfox or LoRaWAN, and when operating with these protocols the receiver is not Meshlium, but a Sigfox or LoRaWAN base station).
These frames are supposed to facilitate the comprehension of the data to be sent. As the frame is composed of ASCII characters is easier to understand all the fields included within the payload.
It is possible to identify two different parts inside the frame. The first one corresponds to the header and its structure is always the same. The second one corresponds to the payload and it is where the sensor values are included.
The following figure describes the ASCII Frame structure:
The structure fields are described below with an example:
A → Start Delimiter [3 bytes]: It is composed of three characters: "<=>". This is a 3-byte field and it is necessary to identify each frame starting.
B → Frame type [1 byte]: This field is used to determine the frame type. There are two kinds of frames: Binary and ASCII. But it also defines the aim of the frame such as event frames or alarm frames. This field will be explained in the following sections.
C → Number of Fields [1 byte]: This field specifies the number of sensor fields sent in the frame. This helps to calculate the frame length.
D → Separator [1 byte]: The '#' character defines a separator and it is put before and after each field of the frame.
E → Serial ID [16 bytes]: This is a 16-byte field that identifies each Waspmote device uniquely. The serial ID is taken from a specific chip integrated into Waspmote that gives a different identifier to each Waspmote device. So, it is only readable and can not be modified.
F → Waspmote ID [0..16 bytes]: This is a string defined by the user which may identify each Waspmote inside the user\'s network. The field size is variable [from 0 to 16 bytes]. When the user does not want to give any identifier, the field remains empty between frame\'s separators: "##".
G → Frame sequence [1..3 bytes]: This field indicates the number of sequence frame. This counter is 8-bit, so it goes from 0 to 255. However, as it is an ASCII frame, the number is converted to a string in order to be understood. This is the reason the length of this field varies between one and three bytes. Each time the counter reaches the maximum 255, it is reset to 0. This sequence number is used in order to detect loss of frames.
Note: There is only one frame counter, so in the case two communication modules are used, this counter is incremented each time a new frame is created. If each module needs to create a new frame, the counter will be incremented by 2 in the same loop, one for each frame creation.
The frame payload is composed of several sensor data. All data sent in these fields correspond to a predefined sensor data type in the sensor table. This sensor table is stored in Meshlium (gateway of the network) and it will be used in order to interact with the database.
There are three types of ASCII sensor data:
Simple Data: The sensor field is composed of a single sensor value. The format is: "\:\" and a separator character [#] is set at the end of the value. For example, a temperature field indicating 23 ºC would be as follows:
TC:23#
Complex Data: This is the format used to send sensor fields composed of two or three values. The format is: "<sensor_id>:<value>;<value>;<value>" and a separator character [#] is set at the end of the last value. Accelerometer and GPS measurements are some examples:
ACC:996;-250;-100#
GPS:41.680616;-0.886233#
Special Data: Date and time are defined in a special format.
Date is defined as “ yy-mm-dd ” where:
yy: year
mm: month
dd: day of the month
Example: #DATE:13-01-01#
Time is formatted as "hh-mm-ss+GMT
" where:
hh: hours
mm: minutes
ss: seconds
GMT: GMT is added after hh-mm-ss. It is possible to avoid this information in order to save frame size.
Example without GMT: TIME:12-24-16#
Example with GMT: TIME:12-24-16+1#
This frame type has been designed to create more compressed frames. The main goal of defining binary fields is to save bytes in frame\'s payload in order to send as much information as possible. The main disadvantage is the legibility of the frame.
As the ASCII frames, the Binary frames are also composed of two different parts: header and payload. The header of the Binary frame is quite similar to the ASCII frame except for the frame sequence number and the separator at the end of the header.
The following figure describes the Binary Frame structure:
The structure fields are described below with an example:
A → Start Delimiter [3 bytes]: It is composed of three characters: "\<=>". This is a 3-byte field and it is necessary to identify each frame starting.
B → Frame Type [1 byte]: This field is used to determine the frame type. There are two kinds of frames: Binary and ASCII. But it also defines the aim of the frame such event frames or alarm frames. This field will be explained in the following sections.
C → Number of bytes [1 byte]: This field specifies the number of bytes after this field until the end of the payload is found.
D → Separator [1 byte]: The '#' character defines a separator and it is put between some fields which length is not specified. This helps to parse the different fields in reception.
E → Serial ID [8 byte]: This is a 8-byte field which identifies each Waspmote device uniquely. The serial ID is taken from a specific chip integrated in Waspmote that gives a different identifier to each Waspmote device. So, it is only readable and it can not be modified. Note that the Serial ID is sent as a binary field too.
F → Waspmote ID [variable]: This is a string defined by the user which may identify each Waspmote inside the user\'s network. The field size is variable [from 0 to 16 bytes]. When the user do not want to give any identifier, the field remains empty indicated by a unique '#' character.
G → Frame sequence [1 byte]: This field indicates the number of sent frame. This counter is 8-bit, so it goes from 0 to 255. Each time it reaches the maximum 255 is reset to 0. This sequence number is used in order to detect loss of frames.
Note: There is only one frame counter, so in the case two communication modules are used, this counter is incremented each time a new frame is created. If each module needs to create a new frame, the counter will be incremented by 2 in the same loop, one for each frame creation.
The frame payload might be composed of several sensor data. All data sent in these fields correspond to a predefined sensor data type in the sensor table. Regarding the binary format, each sensor in the sensor table determines the number of necessary bytes to express the sensor value. The sensor table is stored in Meshlium (gateway of the network) and it will be used in order to interact with the database.
There are three types of Binary sensor fields:
Simple Data: The sensor field is composed of a single sensor value. The format of this field is: the first byte codifies the sensor identifier. Following the first byte and according to the sensor table, there is a number of bytes which correspond to the sensor value. For example, the temperature sensor is a float number, so it is a 4-byte field. Thus, the sensor field for 27 ºC will be set as follows:
Note: Floats are codified so they are not a simple conversion.
Complex Data: This is the format used to send sensor data composed of more than one value. The format of this field is: the first byte codifies the sensor type. Then, the different values are codified using as many bytes as they specify in the sensor table. For example, the GPS field is composed of both latitude and longitude floats, which means that 8 bytes are needed for both float values:
Note: Floats are codified so they are not a simple conversion.
String: This is the only field that is formed differently: the first byte codifies the sensor type, the second byte defines the string length, and the rest of the bytes belong to the string itself according to the length previously defined. For example, the string "hello" is formatted as follows:
This type of frame has been designed to create short frames with data. The purpose of implementing tiny frames is to be able to create sensor data frames which can be sent via short-payload protocols, like Sigfox or LoRaWAN. The main disadvantage is that Meshlium does not support this frame format. However, as short-payload protocols send data directly to a Cloud system through a base station, the tiny frame format is perfect for these applications.
Tiny frames generation is based on a previously created binary frame. The goal is to create a full binary frame, and then generate different tiny frames from the original binary frame. So the steps involved in tiny frame creation are:
Step 1: The user must create a single binary frame
Step 2: Add sensor data as usual
Step 3: Finally, generate tiny frames from the current contents of the binary frame
In order to generate new tiny frames the following functions are described.
The setTinyLength()
function allows the user to configure the maximum payload of the tiny frames to be generated. By default, the maximum payload size is 12 bytes. The range of this parameter goes from 10 to 100 bytes.
The generateTinyFrame()
function allows the user to generate a new tiny frame from an original binary frame. The contents of the tiny frame are stored in the bufferTiny
buffer. The length of this buffer is provided by the lengthTiny
variable. This function returns the number of pending sensor fields to be filled in a tiny frame from the original binary frame. So, this function should be called several times until no more pending fields are returned.
The following figure describes the tiny frame structure:
The structure fields are described below with an example:
A → Frame sequence [1 byte]: This field indicates the sequence number. This is an 8-bit counter, so it goes from 0 to 255. Each time it reaches the maximum 255, it is reset to 0. This sequence number is used in order to detect loss of frames. All tiny frames generated from the same original binary frame have the same sequence number. So, this can be understood as frame fragmentation.
B → Length [1 byte]: This is the total number of bytes of the tiny frame including both header and payload. In other words, the total length stored in the lengthTiny
variable.
As it was said before, there is a specific field in the header which specifies the frame type. This field is defined by a byte noted as the sequence of the following bits: b7,b6,b5,b4,b3,b2,b1,b0:
b7: The most significant bit specifies if the frame is ASCII (b7=1) or Binary (b7=0).
b6-b0: The rest of the bits determine the frame type which might be an event frame, a time out frame, etc.
The following table describes all possible sensor fields.
Reference: This column refers to the sensor reference given by Libelium to each sensor in the sensor catalog.
Sensor TAG: This column defines the constants needed to add each sensor to the frame using addSensor() function.
SENSOR ID: Each sensor field has its own identifier. Depending on the Sensor TAG chosen, a different identifier will be set as sensor identifier. ASCII frames use a string label as sensor identifier. Binary frames use a byte as sensor identifier so as to save frame size.
Number of Fields: Defines the number of different fields a sensor value presents. Most sensors only need a unique field. But there are some cases which need more than one, i.e. the GPS module which needs 2 fields for both latitude and longitude measurements.
Type and Size: Indicates the variable type which has to be used for each sensor. The possibilities are: uint8_t (1 byte), int (2 bytes), float (4 bytes), unsigned long (4 bytes), string (variable size). ASCII frames do not have constraints when adding sensor fields in order to facilitate the user to insert new sensor data.
Default Decimal Precision: Defines for each sensor the number of decimals used in ASCII frames when using float variable types.
Units: This column defines the units used for each sensor.
Sensor
Sensor Reference
Sensor TAG
Sensor ID - Binary
Sensor ID - ASCII
Number Of Fields
Binary -Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Unit
Carbon Monoxide – CO
9229
SENSOR_GASES_CO
0
CO
1
float
4
3
ppm
Carbon Dioxide – CO2
9230
SENSOR_GASES_CO2
1
CO2
1
float
4
3
ppm
Oxygen – O2
9231
SENSOR_GASES_O2
2
O2
1
float
4
3
ppm
Methane – CH4
9232
SENSOR_GASES_CH4
3
CH4
1
float
4
3
ppm
Ozone – O3
9258
SENSOR_GASES_O3
4
O3
1
float
4
3
ppm
Ammonia – NH3
9233
SENSOR_GASES_NH3
5
NH3
1
float
4
3
ppm
Nitrogen Dioxide – NO2
9238
SENSOR_GASES_NO2
6
NO2
1
float
4
3
ppm
Liquefied Petroleum Gases
9234
SENSOR_GASES_LPG
7
LPG
1
float
4
3
ppm
Air Pollutants 1
9235
SENSOR_GASES_AP1
8
AP1
1
float
4
3
ppm
Air Pollutants 2
9236
SENSOR_GASES_AP2
9
AP2
1
float
4
3
ppm
Solvent Vapors
9237
SENSOR_GASES_SV
10
SV
1
float
4
3
ppm
Hydrocarbons – VOC
9201
SENSOR_GASES_VOC
11
VOC
1
float
4
3
ppm
BME – Temperature Celsius
9370-P
SENSOR_GASES_TC
74
TC
1
float
4
2
º C
BME – Temperature Farhenheit
9370-P
SENSOR_GASES_TF
75
TF
1
float
4
2
º F
BME – Humidity
9370-P
SENSOR_GASES_HUM
76
HUM
1
float
4
1
%RH
BME – Pressure
9370-P
SENSOR_GASES_PRES
77
PRES
1
float
4
2
Pascales
Luxes
9325
SENSOR_GASES_LUXES
78
LUX
1
uint32_t
4
0
luxes
Ultrasound
9246-P
SENSOR_GASES_US
79
US
1
uint16_t
2
0
cm
Sensor
Sensor Reference
Sensor TAG
Sensor ID - Binary
Sensor ID - ASCII
Number Of Fields
Binary -Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Unit
Carbon Monoxide – CO
9371-P
SENSOR_GASES_PRO_CO
0
CO
1
float
4
3
ppm
Carbon Dioxide – CO2
9372-P
SENSOR_GASES_PRO_CO2
1
CO2
1
float
4
3
ppm
Oxygen – O2
9373-P
SENSOR_GASES_PRO_O2
2
O2
1
float
4
3
ppm
Methane – CH4
9379-P
SENSOR_GASES_PRO_CH4
3
CH4
1
float
4
3
% LEL
Ozone – O3
9374-P
SENSOR_GASES_PRO_O3
4
O3
1
float
4
3
ppm
Ammonia – NH3
9378-P
SENSOR_GASES_PRO_NH3
5
NH3
1
float
4
3
ppm
Nitrogen Dioxide – NO2
9376-P
SENSOR_GASES_PRO_NO2
6
NO2
1
float
4
3
ppm
Nitrogen Monoxide – NO
9375-P
SENSOR_GASES_PRO_NO
12
NO
1
float
4
3
ppm
Chlorine – CL2
9386-P
SENSOR_GASES_PRO_CL2
13
CL2
1
float
4
3
ppm
Ethylene Oxide
9385-P
SENSOR_GASES_PRO_ETO
14
ETO
1
float
4
3
ppm
Hydrogen – H2
9380-P
SENSOR_GASES_PRO_H2
15
H2
1
float
4
3
ppm
Hydrogen Sulphide – H2S
9381-P
SENSOR_GASES_PRO_H2S
16
H2S
1
float
4
3
ppm
Hydrogen Chloride – HCL
9382-P
SENSOR_GASES_PRO_HCL
17
HCL
1
float
4
3
ppm
Hydrogen Cyanide – HCN
9383-P
SENSOR_GASES_PRO_HCN
18
HCN
1
float
4
3
ppm
Phospine – PH3
9384-P
SENSOR_GASES_PRO_PH3
19
PH3
1
float
4
3
ppm
Sulfur Dioxide – SO2
9377-P
SENSOR_GASES_PRO_SO2
20
SO2
1
float
4
3
ppm
P&S! SOCKET A (gas sensor)
N/A
SENSOR_GASES_PRO_SOCKET_A
30
GP_A
1
float
4
3
ppm
P&S! SOCKET B (gas sensor)
N/A
SENSOR_GASES_PRO_SOCKET_B
31
GP_B
1
float
4
3
ppm
P&S! SOCKET C (gas sensor)
N/A
SENSOR_GASES_PRO_SOCKET_C
32
GP_C
1
float
4
3
ppm
P&S! SOCKET F (gas sensor)
N/A
SENSOR_GASES_PRO_SOCKET_F
35
GP_F
1
float
4
3
ppm
Particle Matter – PM1
9387-P
SENSOR_GASES_PRO_PM1
70
PM1
1
float
4
4
μg/m3
Particle matter – PM2.5
9387-P
SENSOR_GASES_PRO_PM2_5
71
PM2_5
1
float
4
4
μg/m3
Particle Matter – PM10
9387-P
SENSOR_GASES_PRO_PM10
72
PM10
1
float
4
4
μg/m3
Particle Matter – 24 bins
9387-P
SENSOR_GASES_PRO_PM_BIN
190
PM_BIN
24
uint16_t
2
0
Particles
Particle Matter – First 16 bins
9387-P
SENSOR_GASES_PRO_PM_BINL
191
PM_BINL
16
uint16_t
2
0
Particles
Particle Matter – Last 8 bins
9387-P
SENSOR_GASES_PRO_PM_BINH
192
PM_BINH
8
uint16_t
2
0
Particles
BME – Temperature Celsius
9370-P
SENSOR_GASES_PRO_TC
74
TC
1
float
4
2
º C
BME – Temperature Fahrenheit
9370-P
SENSOR_GASES_PRO_TF
75
TF
1
float
4
2
º F
BME – Humidity
9370-P
SENSOR_GASES_PRO_HUM
76
HUM
1
float
4
1
%RH
BME – Pressure
9370-P
SENSOR_GASES_PRO_PRES
77
PRES
1
float
4
2
Pascales
Luxes
9325
SENSOR_GASES_PRO_LUXES
78
LUX
1
uint32_t
4
0
luxes
Ultrasound
9246-P
SENSOR_GASES_PRO_US
79
US
1
uint16_t
2
0
cm
Sensor
Sensor Reference
Sensor TAG
Sensor ID - Binary
Sensor ID - ASCII
Number Of Fields
Binary -Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Unit
Water flow
9296 / 9297 / 9298
SENSOR_EVENTS_WF
40
WF
1
float
4
3
l/min
PIR
9212
SENSOR_EVENTS_PIR
41
PIR
1
uint8_t
1
0
Open / Closed
Liquid presence
9243
SENSOR_EVENTS_LP
42
LP
1
uint8_t
1
0
Open / Closed
Liquid level
9239 / 9240 / 9242
SENSOR_EVENTS_LL
43
LL
1
uint8_t
1
0
Open / Closed
Hall effect
9207
SENSOR_EVENTS_HALL
44
HALL
1
uint8_t
1
0
Open / Closed
Relay input
N/A
SENSOR_EVENTS_RELAY_IN
45
RIN
1
uint8_t
1
0
Open / Closed
Relay output
N/A
SENSOR_EVENTS_RELAY_OUT
46
ROUT
1
uint8_t
1
0
Open / Closed
P&S! SOCKET A (binary)
N/A
SENSOR_EVENTS_SOCKET_A
47
EV_A
1
uint8_t
1
0
Open / Closed
P&S! SOCKET C (binary)
N/A
SENSOR_EVENTS_SOCKET_C
48
EV_C
1
uint8_t
1
0
Open / Closed
P&S! SOCKET D (binary)
N/A
SENSOR_EVENTS_SOCKET_D
49
EV_D
1
uint8_t
1
0
Open / Closed
P&S! SOCKET E (binary)
N/A
SENSOR_EVENTS_SOCKET_E
50
EV_E
1
uint8_t
1
0
Open / Closed
BME – Temperature Celsius
9370-P
SENSOR_EVENTS_TC
74
TC
1
float
4
2
º C
BME – Temperature Fahrenheit
9370-P
SENSOR_EVENTS_TF
75
TF
1
float
4
2
º F
BME – Humidity
9370-P
SENSOR_EVENTS_HUM
76
HUM
1
float
4
1
%RH
BME – Pressure
9370-P
SENSOR_EVENTS_PRES
77
PRES
1
float
4
2
Pascales
Luxes
9325
SENSOR_EVENTS_LUXES
78
LUX
1
uint32_t
4
0
luxes
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
Carbon Monoxide – CO
9386-P
SENSOR_CITIES_PRO_CO
0
CO
1
float
4
3
ppm
Carbon Dioxide – CO2
9371-P
SENSOR_CITIES_PRO_CO2
1
CO2
1
float
4
3
ppm
Oxygen – O2
9385-P
SENSOR_CITIES_PRO_O2
2
O2
1
float
4
3
ppm
Methane – CH4
9380-P
SENSOR_CITIES_PRO_CH4
3
CH4
1
float
4
3
% LEL
Ozone – O3
9381-P
SENSOR_CITIES_PRO_O3
4
O3
1
float
4
3
ppm
Ammonia – NH3
9382-P
SENSOR_CITIES_PRO_NH3
5
NH3
1
float
4
3
ppm
Nitrogen Dioxide – NO2
9383-P
SENSOR_CITIES_PRO_NO2
6
NO2
1
float
4
3
ppm
Nitrogen Monoxide – NO
9378-P
SENSOR_CITIES_PRO_NO
12
NO
1
float
4
3
ppm
Chlorine – CL2
9375-P
SENSOR_CITIES_PRO_CL2
13
CL2
1
float
4
3
ppm
Ethylene Oxide
9376-P
SENSOR_CITIES_PRO_ETO
14
ETO
1
float
4
3
ppm
Hydrogen – H2
9373-P
SENSOR_CITIES_PRO_H2
15
H2
1
float
4
3
ppm
Hydrogen Sulphide – H2S
9384-P
SENSOR_CITIES_PRO_H2S
16
H2S
1
float
4
3
ppm
Hydrogen Chloride – HCL
9377-P
SENSOR_CITIES_PRO_HCL
17
HCL
1
float
4
3
ppm
Hydrogen Cyanide – HCN
9379-P
SENSOR_CITIES_PRO_HCN
18
HCN
1
float
4
3
ppm
Phospine – PH3
9374-P
SENSOR_CITIES_PRO_PH3
19
PH3
1
float
4
3
ppm
Sulfur Dioxide – SO2
9372-P
SENSOR_CITIES_PRO_SO2
20
SO2
1
float
4
3
ppm
Noise Level
TBD
SENSOR_CITIES_PRO_NOISE
21
NOISE
1
float
4
2
dBA
P&S! SOCKET B (gas sensor)
N/A
SENSOR_CITIES_PRO_SOCKET_B
31
GP_B
1
float
4
3
ppm
P&S! SOCKET C (gas sensor)
N/A
SENSOR_CITIES_PRO_SOCKET_C
32
GP_C
1
float
4
3
ppm
P&S! SOCKET F (gas sensor)
N/A
SENSOR_CITIES_PRO_SOCKET_F
35
GP_F
1
float
4
3
ppm
Particle matter – PM1
9387-P
SENSOR_CITIES_PRO_PM1
70
PM1
1
float
4
4
μg/m3
Particle matter – PM2.5
9387-P
SENSOR_CITIES_PRO_PM2_5
71
PM2_5
1
float
4
4
μg/m3
Particle Matter – PM10
9387-P
SENSOR_CITIES_PRO_PM10
72
PM10
1
float
4
4
μg/m3
Particle Matter – 24 bins
9387-P
SENSOR_CITIES_PRO_PM_BIN
190
PM_BIN
24
uint16_t
2
0
Particles
Particle Matter – First 16 bins
9387-P
SENSOR_CITIES_PRO_PM_BINL
191
PM_BINL
16
uint16_t
2
0
Particles
Particle Matter – Last 8 bins
9387-P
SENSOR_CITIES_PRO_PM_BINH
192
PM_BINH
8
uint16_t
2
0
Particles
BME – Temperature Celsius
9370-P
SENSOR_CITIES_PRO_TC
74
TC
1
float
4
2
º C
BME – Temperature Fahrenheit
9370-P
SENSOR_CITIES_PRO_TF
75
TF
1
float
4
2
º F
BME – Humidity
9370-P
SENSOR_CITIES_PRO_HUM
76
HUM
1
float
4
1
%RH
BME – Pressure
9370-P
SENSOR_CITIES_PRO_PRES
77
PRES
1
float
4
2
Pascales
Luxes
9325
SENSOR_CITIES_PRO_LUXES
78
LUX
1
uint32_t
4
0
luxes
Ultrasound
9246-P
SENSOR_CITIES_PRO_US
79
US
1
uint16_t
2
0
cm
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
Calcium Ions
9352 / 9414
SENSOR_IONS_CA
100
SWICA
1
float
4
3
ppm/mg*L-1
Fluoride Ions
9353 / 9417
SENSOR_IONS_FL
101
SWIFL
1
float
4
3
ppm/mg*L-1
Fluoroborate Ions
9354
SENSOR_IONS_FB
102
SWIFB
1
float
4
3
ppm/mg*L-1
Nitrate Ions
9355 / 9421
SENSOR_IONS_NO3
103
SWINO3
1
float
4
3
ppm/mg*L-1
Bromide Ions
9356/ 9413
SENSOR_IONS_BR
104
SWIBR
1
float
4
3
ppm/mg*L-1
Chloride Ions
9357 / 9415
SENSOR_IONS_CL
105
SWICL
1
float
4
3
ppm/mg*L-1
Cupric Ions
9358 / 9416
SENSOR_IONS_CU
106
SWICU
1
float
4
3
ppm/mg*L-1
Iodide Ions
9360 / 9418
SENSOR_IONS_IO
107
SWIIO
1
float
4
3
ppm/mg*L-1
Ammonium
9412
SENSOR_IONS_NH4
108
SWINH4
1
float
4
3
ppm/mg*L-1
Silver Ions
9362 / 9425
SENSOR_IONS_AG
109
SWIAG
1
float
4
3
ppm/mg*L-1
pH
9363 / 9411
SENSOR_IONS_PH
110
SWIPH
1
float
4
3
ppm/mg*L-1
Lithium Ions
9419
SENSOR_IONS_LI
111
SWILI
1
float
4
3
ppm/mg*L-1
Magnesium Ions
9420
SENSOR_IONS_MG
112
SWIMG
1
float
4
3
ppm/mg*L-1
Nitrite Ions
9422
SENSOR_IONS_NO2
113
SWINO2
1
float
4
3
ppm/mg*L-1
Perchlorate Ions
9423
SENSOR_IONS_CLO4
114
SWICLO4
1
float
4
3
ppm/mg*L-1
Potassium Ions
9424
SENSOR_IONS_K
115
SWIK
1
float
4
3
ppm/mg*L-1
Sodium Ions
9426
SENSOR_IONS_NA
116
SWINA
1
float
4
3
ppm/mg*L-1
P&S! SOCKET A (ions)
N/A
SENSOR_IONS_SOCKET_A
117
SWI_A
1
float
4
3
ppm/mg*L-1
P&S! SOCKET B (ions)
N/A
SENSOR_IONS_SOCKET_B
118
SWI_B
1
float
4
3
ppm/mg*L-1
P&S! SOCKET C (ions)
N/A
SENSOR_IONS_SOCKET_C
119
SWI_C
1
float
4
3
ppm/mg*L-1
P&S! SOCKET D (ions)
N/A
SENSOR_IONS_SOCKET_D
120
SWI_D
1
float
4
3
ppm/mg*L-1
Water Temperature
9255
SENSOR_IONS_WT
134
WT
1
float
4
2
ºC
Sensor
Sensor Reference
Sensor TAG
Sensor ID - Binary
Sensor ID - ASCII
Number Of Fields
Binary -Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Unit
Geiger tube
N/A
SENSOR_RADIATION
129
RAD
1
float
4
6 or 0
uSv/h or cpm
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
Water pH
9328
SENSOR_WATER_PH
130
PH
1
float
4
2
N/A
Oxidation Reduction Potential
9329
SENSOR_WATER_ORP
131
ORP
1
float
4
3
voltage
Disolved oxygen
9327
SENSOR_WATER_DO
132
DO
1
float
4
1
%
Water Conductivity
9326
SENSOR_WATER_COND
133
COND
1
float
4
1
μS/cm
Water Temperature
9255
SENSOR_WATER_WT
134
WT
1
float
4
2
ºC
Turbidity
9353
SENSOR_WATER_TURB
135
TURB
1
float
4
1
NTU
pH (P&S! SOCKET A)
9328
SENSOR_WATER_PH_A
136
PH_A
1
float
4
2
N/A
pH (P&S! SOCKET E)
9328
SENSOR_WATER_PH_E
137
PH_E
1
float
4
2
N/A
ORP (P&S! SOCKET A)
9329
SENSOR_WATER_ORP_A
138
ORP_A
1
float
4
3
voltage
ORP (P&S! SOCKET E)
9329
SENSOR_WATER_ORP_E
139
ORP_E
1
float
4
3
voltage
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - BinarySensor TAG
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
Soil Moisture (watermark1)
9248
SENSOR_AGR_SOIL1
150
SOIL1
1
float
4
2
Frequency
Soil Moisture (watermark2)
9248
SENSOR_AGR_SOIL2
151
SOIL2
1
float
4
2
Frequency
Soil Moisture (watermark3)
9248
SENSOR_AGR_SOIL3
152
SOIL3
1
float
4
2
Frequency
Soil Temperature (DS18B20/PT1000)
86949/9255
SENSOR_AGR_SOILTC
153
SOILTC
1
float
4
2
ºC
Soil Temperature (DS18B20/PT1000)
86949/9255
SENSOR_AGR_SOILTF
154
SOILTF
1
float
4
2
ºF
Leaf Wetness
9249
SENSOR_AGR_LW
155
LW
1
float
4
3
%
Anemometer
9256
SENSOR_AGR_ANE
156
ANE
1
float
4
2
km/h
Wind Vane
9256
SENSOR_AGR_WV
157
WV
1
uint8_t
1
N/A
Direction
Pluviometer (current hour)
9256
SENSOR_AGR_PLV1
158
PLV1
1
float
4
2
mm
Pluviometer (previous hour)
9256
SENSOR_AGR_PLV2
159
PLV2
1
float
4
2
mm/h
Pluviometer (last 24h)
9256
SENSOR_AGR_PLV3
160
PLV3
1
float
4
2
mm/day
Solar Radiation
9251
SENSOR_AGR_PAR
161
PAR
1
float
4
2
μmol*m-2*s-1
Ultraviolet Radiation
9257
SENSOR_AGR_UV
162
UV
1
float
4
2
μmol*m-2*s-1
Trunk Diameter
9252
SENSOR_AGR_TD
163
TD
1
float
4
3
mm
Stem Diameter
9253
SENSOR_AGR_SD
164
SD
1
float
4
3
mm
Fruit Diameter
9254
SENSOR_AGR_FD
165
FD
1
float
4
3
mm
Soil Moisture (P&S! SOCKET B)
9248
SENSOR_AGR_SOIL_B
166
SOIL_B
1
float
4
2
Frequency
Soil Moisture (P&S! SOCKET C)
9248
SENSOR_AGR_SOIL_C
167
SOIL_C
1
float
4
2
Frequency
Soil Moisture (P&S! SOCKET E)
9248
SENSOR_AGR_SOIL_E
168
SOIL_E
1
float
4
2
Frequency
BME – Temperature Celsius
9370-P
SENSOR_AGR_TC
74
TC
1
float
4
2
º C
BME – Temperature Fahrenheit
9370-P
SENSOR_AGR_TF
75
TF
1
float
4
2
º F
BME – Humidity
9370-P
SENSOR_AGR_HUM
76
HUM
1
float
4
1
%RH
BME – Pressure
9370-P
SENSOR_AGR_PRES
77
PRES
1
float
4
2
Pascales
Luxes
9325
SENSOR_AGR_LUXES
78
LUX
1
uint32_t
4
0
luxes
Ultrasound
9246-P
SENSOR_AGR_US
79
US
1
uint16_t
2
0
cm
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variableNumber of Fields
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
BME – Temperature Celsius
9370-P
SENSOR_AMBIENT_TC
74
TC
1
float
4
2
º C
BME – Temperature Fahrenheit
9370-P
SENSOR_AMBIENT_TF
75
TF
1
float
4
2
º F
BME – Humidity
9370-P
SENSOR_AMBIENT_HUM
76
HUM
1
float
4
1
%RH
BME – Pressure
9370-P
SENSOR_AMBIENT_PRES
77
PRES
1
float
4
2
Pascales
Luminosity
9205
SENSOR_AMBIENT_LUM
172
LUM
1
float
4
3
Ohms
Luxes
9325
SENSOR_AMBIENT_LUXES
78
LUX
1
uint32_t
4
0
luxes
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
Battery level
N/A
SENSOR_BAT
52
BAT
1
uint8_t
1
0
%
Global Positioning System
N/A
SENSOR_GPS
53
GPS
2
float
4
6
degrees
RSSI
N/A
SENSOR_RSSI
54
RSSI
1
int
2
0
N/A
MAC Address
N/A
SENSOR_MAC
55
MAC
1
string
variable
N/A
N/A
Network Address (XBee)
N/A
SENSOR_NA
56
NA
1
string
variable
N/A
N/A
Network ID origin (XBee)
N/A
SENSOR_NID
57
NID
1
string
variable
N/A
N/A
Date
N/A
SENSOR_DATE
58
DATE
3
uint8_t
1
N/A
N/A
Time
N/A
SENSOR_TIME
59
TIME
3
uint8_t
1
N/A
N/A
GMT
N/A
SENSOR_GMT
60
GMT
1
int
1
N/A
N/A
Free_RAM
N/A
SENSOR_RAM
61
RAM
1
int
2
0
bytes
Internal_temperature
N/A
SENSOR_IN_TEMP
62
IN_TEMP
1
float
4
2
ºC
Accelerometer
N/A
SENSOR_ACC
63
ACC
3
int
2
0
mg
Millis
N/A
SENSOR_MILLIS
64
MILLIS
1
uint32_t
4
0
ms
String
N/A
SENSOR_STR
65
STR
1
string
variable
N/A
N/A
Unique Identifier
N/A
SENSOR_UID
68
UID
1
string
variable
N/A
N/A
RFID block
N/A
SENSOR_RB
69
RB
1
string
variable
N/A
N/A
Dust sensor (PM1)
9387-P
SENSOR_DUST_PM1
70
PM1
1
float
4
4
μg/m3
Dust sensor (PM2.5)
9387-P
SENSOR_DUST_PM2_5
71
PM2_5
1
float
4
4
μg/m3
Dust sensor (PM10)
9387-P
SENSOR_DUST_PM10
72
PM10
1
float
4
4
μg/m3
Particle Matter – 24 bins
9387-P
SENSOR_PM_BIN
190
PM_BIN
24
uint16_t
2
0
Particles
Particle Matter – First 16 bins
9387-P
SENSOR_PM_BINL
191
PM_BINL
16
uint16_t
2
0
Particles
Particle Matter – Last 8 bins
9387-P
SENSOR_PM_BINH
192
PM_BINH
8
uint16_t
2
0
Particles
BME – Temperature Celsius
9370-P
SENSOR_BME_TC
74
TC
1
float
4
2
º C
BME – Temperature Fahrenheit
9370-P
SENSOR_BME_TF
75
TF
1
float
4
2
º F
BME – Humidity
9370-P
SENSOR_BME_HUM
76
HUM
1
float
4
1
%RH
BME – Pressure
9370-P
SENSOR_BME_PRES
77
PRES
1
float
4
2
Pascales
Luxes
9325
SENSOR_LUXES
78
LUX
1
uint32_t
4
0
luxes
Ultrasound
9246-P
SENSOR_ULTRASOUND
79
US
1
uint16_t
2
0
cm
GPS speed over the ground
N/A
SENSOR_SPEED
89
SPEED_OG
1
float
4
2
km/h
GPS course over the ground
N/A
SENSOR_COURSE
90
COURSE_OG
1
float
4
2
degrees
GPS altitude
N/A
SENSOR_ALTITUDE
91
ALT
1
float
4
2
m
GPS HDOP
N/A
SENSOR_HDOP
92
HDOP
1
float
4
3
N/A
GPS VDOP
N/A
SENSOR_VDOP
93
VDOP
1
float
4
3
N/A
GPS PDOP
N/A
SENSOR_PDOP
94
PDOP
1
float
4
3
N/A
Timestamp (Unix/Epoch)
N/A
SENSOR_TST
123
TST
1
uint32_t
4
0
seconds
Version of API
N/A
SENSOR_VAPI
125
VAPI
1
uint8_t
1
N/A
N/A
Version of program
N/A
SENSOR_VPROG
126
VPROG
1
uint8_t
1
N/A
N/A
Version of bootloader
N/A
SENSOR_VBOOT
127
VBOOT
1
uint8_t
1
N/A
N/A
Parking state
N/A
SENSOR_PARKING
128
PS
1
uint8_t
1
N/A
N/A
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
Current (P&S! SOCKET A)
N/A
SENSOR_4_20_CURRENT_SOCKET_A
175
CUR_A
1
float
4
3
mA
Current (P&S! SOCKET B)
N/A
SENSOR_4_20_CURRENT_SOCKET_B
176
CUR_B
1
float
4
3
mA
Current (P&S! SOCKET C)
N/A
SENSOR_4_20_CURRENT_SOCKET_C
177
CUR_C
1
float
4
3
mA
Current (P&S! SOCKET D)
N/A
SENSOR_4_20_CURRENT_SOCKET_D
178
CUR_D
1
float
4
3
mA
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
Modbus coils (up to 16 bits)
N/A
SENSOR_MODBUS_COILS
180
MB_COILS
2
int
2
N/A
N/A
Modbus discrete inputs (up to 16 bits)
N/A
SENSOR_MODBUS_DISCRETE_INPUT
181
MB_DI
2
int
2
N/A
N/A
Modbus holding registers (up to 2 registers)
N/A
SENSOR_MODBUS_HOLDING_REGS
182
MB_HR
3
int
2
N/A
N/A
Modbus input registers (up to 2 registers)
N/A
SENSOR_MODBUS_INPUT_REGS
183
MB_IR
3
int
2
N/A
N/A
CAN bus engine rpm
N/A
SENSOR_CANBUS_RPM
184
CB_RPM
1
uint16_t
2
0
rpm
CAN bus vehicle speed
N/A
SENSOR_CANBUS_VS
185
CB_VS
1
uint16_t
2
0
km/h
CAN bus fuel rate
N/A
SENSOR_CANBUS_FR
186
CB_FR
1
uint16_t
2
0
l/h
CAN bus fuel level
N/A
SENSOR_CANBUS_FL
187
CB_FL
1
uint8_t
1
0
%
CAN bus throttle position
N/A
SENSOR_CANBUS_TP
188
CB_TP
1
uint8_t
1
0
%
CAN bus fuel pressure
N/A
SENSOR_CANBUS_FP
189
CB_FP
1
uint16_t
2
0
kPa
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
BME – Temperature Celsius socket A
9370-P
AGRX_TC_A
0
TC_A
1
float
4
2
ºC
BME – Temperature Fahrenheit socket A
9370-P
AGRX_TF_A
1
TF_A
1
float
4
2
ºF
BME – Humidity socket A
9370-P
AGRX_HUM_A
2
HUM_A
1
float
4
1
%RH
BME- Pressure socket A
9370-P
AGRX_PRES_A
3
PRES_A
1
float
4
2
Pascales
BME – Temperature Celsius socket D
9370-P
AGRX_TC_D
4
TC_D
1
float
4
2
ºC
BME – Temperature Fahrenheit socket D
9370-P
AGRX_TF_D
5
TF_D
1
float
4
2
ºF
BME – Humidity socket D
9370-P
AGRX_HUM_D
6
HUM_D
1
float
4
1
%RH
BME- Pressure socket D
9370-P
AGRX_PRES_D
7
PRES_D
1
float
4
2
Pascales
Luxes socket A
9325-P
AGRX_LUXES_A
8
LUX_A
1
uint32_t
4
0
Luxes
Luxes socket D
9325-P
AGRX_LUXES_D
9
LUX_D
1
uint32_t
4
0
Luxes
Ultrasound socket A
9246-P
AGRX_US_A
10
US_A
1
uint16_t
2
0
cm
Ultrasound socket D
9246-P
AGRX_US_D
11
US_D
1
uint16_t
2
0
cm
Leaf wetness
9466-P
AGRX_LW
12
LW
1
float
4
4
V
Shortwave radiation socket B
9470-P
AGRX_SR_B
13
SR_B
1
float
4
2
μmol*m2*s-1
Shortwave radiation socket C
9470-P
AGRX_SR_C
14
SR_C
1
float
4
2
μmol*m2*s-1
Shortwave radiation socket E
9470-P
AGRX_SR_E
15
SR_E
1
float
4
2
μmol*m2*s-1
Shortwave radiation socket F
9470-P
AGRX_SR_F
16
SR_F
1
float
4
2
μmol*m2*s-1
PAR – socket B
9251-P
AGRX_PAR_B
17
PAR_B
1
float
4
2
μmol*m2*s-1
PAR – socket C
9251-P
AGRX_PAR_C
18
PAR_C
1
float
4
2
μmol*m2*s-1
PAR – socket E
9251-P
AGRX_PAR_E
19
PAR_E
1
float
4
2
μmol*m2*s-1
PAR – socket F
9251-P
AGRX_PAR_F
20
PAR_F
1
float
4
2
μmol*m2*s-1
Ultraviolet radiation – socket B
9257-P
AGRX_UV_B
21
UV_B
1
float
4
2
μmol*m2*s-1
Ultraviolet radiation – socket C
9257-P
AGRX_UV_C
22
UV_C
1
float
4
2
μmol*m2*s-1
Ultraviolet radiation – socket E
9257-P
AGRX_UV_E
23
UV_E
1
float
4
2
μmol*m2*s-1
Ultraviolet radiation – socket F
9257-P
AGRX_UV_F
24
UV_F
1
float
4
2
μmol*m2*s-1
Trunk Diameter
9252-P
AGRX_TD
25
TD
1
float
4
3
mm
Stem Diameter
9253-P
AGRX_SD
26
SD
1
float
4
3
mm
Fruit Diameter
9254-P
AGRX_FD
27
FD
1
float
4
3
mm
Current socket F
N/A
AGRX_CURRENT_SOCKET_F
28
CUR_F
1
float
4
3
mA
Current socket B
N/A
AGRX_CURRENT_SOCKET_B
29
CUR_B
1
float
4
3
mA
SI-411 – target temperature socket A
9468-P
AGRX_SI411_TC1_A
30
TC1_A
1
float
4
4
ºC
SI-411 – target temperature socket B
9468-P
AGRX_SI411_TC1_B
31
TC1_B
1
float
4
4
ºC
SI-411 – target temperature socket C
9468-P
AGRX_SI411_TC1_C
32
TC1_C
1
float
4
4
ºC
SI-411 – target temperature socket D
9468-P
AGRX_SI411_TC1_D
33
TC1_D
1
float
4
4
ºC
SI-411 – millivolts socket A
9468-P
AGRX_SI411_MV1_A
34
MV1_A
1
float
4
3
mV
SI-411 – millivolts socket B
9468-P
AGRX_SI411_MV1_B
35
MV1_B
1
float
4
3
mV
SI-411 – millivolts socket C
9468-P
AGRX_SI411_MV1_C
36
MV1_C
1
float
4
3
mV
SI-411 – millivolts socket D
9468-P
AGRX_SI411_MV1_D
37
MV1_D
1
float
4
3
mV
SI-411 – body temperature socket A
9468-P
AGRX_SI411_BT1_A
38
BT1_A
1
float
4
3
ºC
SI-411 – body temperature socket B
9468-P
AGRX_SI411_BT1_B
39
BT1_B
1
float
4
3
ºC
SI-411 – body temperature socket C
9468-P
AGRX_SI411_BT1_C
40
BT1_C
1
float
4
3
ºC
SI-411 – body temperature socket D
9468-P
AGRX_SI411_BT1_D
41
BT1_D
1
float
4
3
ºC
Modbus coils (up to 16 bits)
N/A
AGRX_MODBUS_COILS
42
MB_COILS
2
int
2
N/A
N/A
Modbus discrete inputs (up to 16 bits)
N/A
AGRX_MODBUS_DISCRETE_INPUT
43
MB_DI
2
int
2
N/A
N/A
Modbus holding registers (up to 2 registers)
N/A
AGRX_MODBUS_HOLDING_REGS
44
MB_HR
3
int
2
N/A
N/A
Modbus input registers (up to 2 registers)
N/A
AGRX_MODBUS_INPUT_REGS
45
MB_IR
3
int
2
N/A
N/A
TEROS11 – volumetric water content socket A
9512-P
AGRX_TEROS11_VWC1_A
46
VWC1_A
1
float
4
2
N/A
TEROS11 – volumetric water content socket B
9512-P
AGRX_TEROS11_VWC1_B
47
VWC1_B
1
float
4
2
N/A
TEROS11 – volumetric water content socket C
9512-P
AGRX_TEROS11_VWC1_C
48
VWC1_C
1
float
4
2
N/A
TEROS11 – volumetric water content socket D
9512-P
AGRX_TEROS11_VWC1_D
49
VWC1_D
1
float
4
2
N/A
TEROS11 – dielectric permitivity socket A
9512-P
AGRX_TEROS11_DP4_A
50
DP4_A
1
float
4
2
N/A
TEROS11 – dielectric permitivity socket B
9512-P
AGRX_TEROS11_DP4_B
51
DP4_B
1
float
4
2
N/A
Datasol Met – radiation
AGRX_DATASOL_RAD
95
RAD
1
uint16_t
2
0
W/m²
Datasol Met – semicell 1 radiation
AGRX_DATASOL_SC1_RAD
96
SC1_RAD
1
uint16_t
2
0
W/m²
Datasol Met – semicell 2 radiation
AGRX_DATASOL_SC2_RAD
97
SC2_RAD
1
uint16_t
2
0
W/m²
Datasol Met – environment temperature
AGRX_DATASOL_ETC
98
ETC
1
float
4
1
ºC
Datasol Met – panel temperature
AGRX_DATASOL_PTC
99
PTC
1
float
4
1
ºC
Datasol Met – wind speed
AGRX_DATASOL_WSP
100
WSP
1
float
4
1
m/s
Datasol Met – peak sun hours
AGRX_DATASOL_PSH
101
PSH
1
float
4
2
h
Datasol Met – necessary cleaning notice
AGRX_DATASOL_NCN
102
NCN
1
uint8_t
1
0
Y/N
TEROS11 – dielectric permitivity socket C
9512-P
AGRX_TEROS11_DP4_C
103
DP4_C
1
float
4
2
N/A
TEROS11 – dielectric permitivity socket D
9512-P
AGRX_TEROS11_DP4_D
104
DP4_D
1
float
4
2
N/A
TEROS11 – temperature socket A
9512-P
AGRX_TEROS11_TC7_A
105
TC7_A
1
float
4
2
ºC
TEROS11 – temperature socket B
9512-P
AGRX_TEROS11_TC7_B
106
TC7_B
1
float
4
2
ºC
TEROS11 – temperature socket C
9512-P
AGRX_TEROS11_TC7_C
107
TC7_C
1
float
4
2
ºC
TEROS11 – temperature socket D
9512-P
AGRX_TEROS11_TC7_D
108
TC7_D
1
float
4
2
ºC
TEROS12 – volumetric water content socket A
9499-P
AGRX_TEROS12_VWC2_A
109
VWC2_A
1
float
4
2
N/A
TEROS12 – volumetric water content socket B
9499-P
AGRX_TEROS12_VWC2_B
110
VWC2_B
1
float
4
2
N/A
TEROS12 – volumetric water content socket C
9499-P
AGRX_TEROS12_VWC2_C
111
VWC2_C
1
float
4
2
N/A
TEROS12 – volumetric water content socket D
9499-P
AGRX_TEROS12_VWC2_D
112
VWC2_D
1
float
4
2
N/A
TEROS12 – dielectric permitivity socket A
9499-P
AGRX_TEROS12_DP5_A
113
DP5_A
1
float
4
2
N/A
TEROS12 – dielectric permitivity socket B
9499-P
AGRX_TEROS12_DP5_B
114
DP5_B
1
float
4
2
N/A
TEROS12 – dielectric permitivity socket C
9499-P
AGRX_TEROS12_DP5_C
115
DP5_C
1
float
4
2
N/A
TEROS12 – dielectric permitivity socket D
9499-P
AGRX_TEROS12_DP5_D
116
DP5_D
1
float
4
2
N/A
TEROS12 – electrical conductivity socket A
9464-P
AGRX_TEROS12_EC3_A
117
EC3_A
1
float
4
0
dS/m
TEROS12 – electrical conductivity socket B
9464-P
AGRX_TEROS12_EC3_B
118
EC3_B
1
float
4
0
dS/m
TEROS12 – electrical conductivity socket C
9464-P
AGRX_TEROS12_EC3_C
119
EC3_C
1
float
4
0
dS/m
TEROS12 – electrical conductivity socket D
9464-P
AGRX_TEROS12_EC3_D
120
EC3_D
1
float
4
0
dS/m
TEROS12 – temperature socket A
9464-P
AGRX_TEROS12_TC8_A
121
TC8_A
1
float
4
2
ºC
TEROS12 – temperature socket B
9464-P
AGRX_TEROS12_TC8_B
122
TC8_B
1
float
4
2
ºC
TEROS12 – temperature socket C
9512-P
AGRX_TEROS12_TC8_C
129
TC8_C
1
float
4
2
ºC
TEROS12 – temperature socket D
9512-P
AGRX_TEROS12_TC8_D
130
TC8_D
1
float
4
2
ºC
SO-411 – calibrated oxigen socket A
9469-P
AGRX_SO411_CO_A
134
CO_A
1
float
4
3
%
SO-411 – calibrated oxigen socket B
9469-P
AGRX_SO411_CO_B
135
CO_B
1
float
4
3
%
SO-411 – calibrated oxigen socket C
9469-P
AGRX_SO411_CO_C
136
CO_C
1
float
4
3
%
SO-411 – calibrated oxigen socket D
9469-P
AGRX_SO411_CO_D
137
CO_D
1
float
4
3
%
SO-411 – body temperature socket A
9469-P
AGRX_SO411_TC2_A
138
TC2_A
1
float
4
1
ºC
SO-411 – body temperature socket B
9469-P
AGRX_SO411_TC2_B
139
TC2_B
1
float
4
1
ºC
SO-411 – body temperature socket C
9469-P
AGRX_SO411_TC2_C
140
TC2_C
1
float
4
1
ºC
SO-411 – body temperature socket D
9469-P
AGRX_SO411_TC2_D
141
TC2_D
1
float
4
1
ºC
SO-411 – millivolts socket A
9469-P
AGRX_SO411_MV2_A
142
MV2_A
1
float
4
4
mV
SO-411 – millivolts socket B
9469-P
AGRX_SO411_MV2_B
143
MV2_B
1
float
4
4
mV
SO-411 – millivolts socket C
9469-P
AGRX_SO411_MV2_C
144
MV2_C
1
float
4
4
mV
SO-411 – millivolts socket D
9469-P
AGRX_SO411_MV2_D
145
MV2_D
1
float
4
4
mV
GS3 – dielectric permitivity socket A
9464-P
AGRX_GS3_DP1_A
146
DP1_A
1
float
4
2
N/A
GS3 – dielectric permitivity socket B
9464-P
AGRX_GS3_DP1_B
147
DP1_B
1
float
4
2
N/A
GS3 – dielectric permitivity socket C
9464-P
AGRX_GS3_DP1_C
148
DP1_C
1
float
4
2
N/A
GS3 – dielectric permitivity socket D
9464-P
AGRX_GS3_DP1_D
149
DP1_D
1
float
4
2
N/A
GS3 – electrical conductivity socket A
9464-P
AGRX_GS3_EC1_A
150
EC1_A
1
float
4
0
μS/cm
GS3 – electrical conductivity socket B
9464-P
AGRX_GS3_EC1_B
151
EC1_B
1
float
4
0
μS/cm
GS3 – electrical conductivity socket C
9464-P
AGRX_GS3_EC1_C
152
EC1_C
1
float
4
0
μS/cm
GS3 – electrical conductivity socket D
9464-P
AGRX_GS3_EC1_D
153
EC1_D
1
float
4
0
μS/cm
GS3 – temperature socket A
9464-P
AGRX_GS3_TC3_A
154
TC3_A
1
float
4
2
ºC
GS3 – temperature socket B
9464-P
AGRX_GS3_TC3_B
155
TC3_B
1
float
4
2
ºC
GS3 – temperature socket C
9464-P
AGRX_GS3_TC3_C
156
TC3_C
1
float
4
2
ºC
GS3 – temperature socket D
9464-P
AGRX_GS3_TC3_D
157
TC3_D
1
float
4
2
ºC
5TE – dielectric permitivity socket A
9402-P
AGRX_5TE_DP2_A
158
DP2_A
1
float
4
2
N/A
5TE – dielectric permitivity socket B
9402-P
AGRX_5TE_DP2_B
159
DP2_B
1
float
4
2
N/A
5TE – dielectric permitivity socket C
9402-P
AGRX_5TE_DP2_C
160
DP2_C
1
float
4
2
N/A
5TE – dielectric permitivity socket D
9402-P
AGRX_5TE_DP2_D
161
DP2_D
1
float
4
2
N/A
5TE – electrical conductivity socket A
9402-P
AGRX_5TE_EC2_A
162
EC2_A
1
float
4
2
dS/m
5TE – electrical conductivity socket B
9402-P
AGRX_5TE_EC2_B
163
EC2_B
1
float
4
2
dS/m
5TE – electrical conductivity socket C
9402-P
AGRX_5TE_EC2_C
164
EC2_C
1
float
4
2
dS/m
5TE – electrical conductivity socket D
9402-P
AGRX_5TE_EC2_D
165
EC2_D
1
float
4
2
dS/m
5TE – temperature socket A
9402-P
AGRX_5TE_TC4_A
166
TC4_A
1
float
4
1
ºC
5TE – temperature socket B
9402-P
AGRX_5TE_TC4_B
167
TC4_B
1
float
4
1
ºC
5TE – temperature socket C
9402-P
AGRX_5TE_TC4_C
168
TC4_C
1
float
4
1
ºC
5TE – temperature socket D
9402-P
AGRX_5TE_TC4_D
169
TC4_D
1
float
4
1
ºC
VP4 – vapor pressure socket A
9471-P
AGRX_VP4_VP_A
170
VP_A
1
float
4
3
kPa
VP4 – vapor pressure socket B
9471-P
AGRX_VP4_VP_B
171
VP_B
1
float
4
3
kPa
VP4 – vapor pressure socket C
9471-P
AGRX_VP4_VP_C
172
VP_C
1
float
4
3
kPa
VP4 – vapor pressure socket D
9471-P
AGRX_VP4_VP_D
173
VP_D
1
float
4
3
kPa
VP4 – temperature socket A
9471-P
AGRX_VP4_TC5_A
174
TC5_A
1
float
4
1
ºC
VP4 – temperature socket B
9471-P
AGRX_VP4_TC5_B
175
TC5_B
1
float
4
1
ºC
VP4 – temperature socket C
9471-P
AGRX_VP4_TC5_C
176
TC5_C
1
float
4
1
ºC
VP4 – temperature socket D
9471-P
AGRX_VP4_TC5_D
177
TC5_D
1
float
4
1
ºC
VP4 – relative humidity socket A
9471-P
AGRX_VP4_RH_A
178
RH_A
1
float
4
1
%RH
VP4 – relative humidity socket B
9471-P
AGRX_VP4_RH_B
179
RH_B
1
float
4
1
%RH
VP4 – relative humidity socket C
9471-P
AGRX_VP4_RH_C
180
RH_C
1
float
4
1
%RH
VP4 – relative humidity socket D
9471-P
AGRX_VP4_RH_D
181
RH_D
1
float
4
1
%RH
VP4 – Atmospheric pressure socket A
9471-P
AGRX_VP4_AP_A
182
AP_A
1
float
4
2
kPa
VP4 – Atmospheric pressure socket B
9471-P
AGRX_VP4_AP_B
183
AP_B
1
float
4
2
kPa
VP4 – Atmospheric pressure socket C
9471-P
AGRX_VP4_AP_C
184
AP_C
1
float
4
2
kPa
VP4 – Atmospheric pressure socket D
9471-P
AGRX_VP4_AP_D
185
AP_D
1
float
4
2
kPa
MPS6 – water potential socket A
9465-P
AGRX_MPS6_WP_A
186
WP_A
1
float
4
1
kPa
MPS6 – water potential socket B
9465-P
AGRX_MPS6_WP_B
187
WP_B
1
float
4
1
kPa
MPS6 – water potential socket C
9465-P
AGRX_MPS6_WP_C
188
WP_C
1
float
4
1
kPa
MPS6 – water potential socket D
9465-P
AGRX_MPS6_WP_D
189
WP_D
1
float
4
1
kPa
MPS6 – temperature socket A
9465-P
AGRX_MPS6_TC6_A
190
TC6_A
1
float
4
1
ºC
MPS6 – temperature socket B
9465-P
AGRX_MPS6_TC6_B
191
TC6_B
1
float
4
1
ºC
MPS6 – temperature socket C
9465-P
AGRX_MPS6_TC6_C
192
TC6_C
1
float
4
1
ºC
MPS6 – temperature socket D
9465-P
AGRX_MPS6_TC6_D
193
TC6_D
1
float
4
1
ºC
SF421 – bud temperature socket A
9467-P
AGRX_SF421_BT2_A
194
BT2_A
1
float
4
3
ºC
SF421 – bud temperature socket B
9467-P
AGRX_SF421_BT2_B
195
BT2_B
1
float
4
3
ºC
SF421 – bud temperature socket C
9467-P
AGRX_SF421_BT2_C
196
BT2_C
1
float
4
3
ºC
SF421 – bud temperature socket D
9467-P
AGRX_SF421_BT2_D
197
BT2_D
1
float
4
3
ºC
SF421 – leaf temperature socket A
9467-P
AGRX_SF421_LT_A
198
LT_A
1
float
4
3
ºC
SF421 – leaf temperature socket B
9467-P
AGRX_SF421_LT_B
199
LT_B
1
float
4
3
ºC
SF421 – leaf temperature socket C
9467-P
AGRX_SF421_LT_C
200
LT_C
1
float
4
3
ºC
SF421 – leaf temperature socket D
9467-P
AGRX_SF421_LT_D
201
LT_D
1
float
4
3
ºC
5TM – dielectric permitivity socket A
9460-P
AGRX_5TM_DP3_A
202
DP3_A
1
float
4
2
?
5TM – dielectric permitivity socket B
9460-P
AGRX_5TM_DP3_B
203
DP3_B
1
float
4
2
?
5TM – dielectric permitivity socket C
9460-P
AGRX_5TM_DP3_C
204
DP3_C
1
float
4
2
?
5TM – dielectric permitivity socket D
9460-P
AGRX_5TM_DP3_D
205
DP3_D
1
float
4
2
?
5TM – temperature socket A
9460-P
AGRX_5TM_TC7_A
206
TC7_A
1
float
4
1
ºC
5TM – temperature socket B
9460-P
AGRX_5TM_TC7_B
207
TC7_B
1
float
4
1
ºC
5TM – temperature socket C
9460-P
AGRX_5TM_TC7_C
208
TC7_C
1
float
4
1
ºC
5TM – temperature socket D
9460-P
AGRX_5TM_TC7_D
209
TC7_D
1
float
4
1
ºC
GMXXXX – wind direction
N/A
AGRX_GMX_WD
210
WD
1
uint16_t
2
0
º
GMXXXX – average wind direction
N/A
AGRX_GMX_AWD
211
AWD
1
uint16_t
2
0
º
GMXXXX – wind speed
N/A
AGRX_GMX_WS
212
WS
1
float
4
2
m/s
GMXXXX – average wind speed
N/A
AGRX_GMX_AWS
213
AWS
1
float
4
2
m/s
GMXXXX – average_wind_gust_direction
N/A
AGRX_GMX_AWGD
214
AWGD
1
uint16_t
2
0
º
GMXXXX – average_wind_gust_speed
N/A
AGRX_GMX_AWGS
215
AWGS
1
float
4
2
m/s
GMXXXX – wind sensor status
N/A
AGRX_GMX_WSS
216
WSS
1
string
4
N/A
N/A
GMXXXX – precipitation total
N/A
AGRX_GMX_PT
217
PT
1
float
4
3
mm
GMXXXX – precipitation intensity
N/A
AGRX_GMX_PI
218
PI
1
float
4
3
mm
GMXXXX – precipitation status
N/A
AGRX_GMX_PST
219
PST
1
uint8_t
1
0
Y/N
GMXXXX – corrected wind direction
N/A
AGRX_GMX_CWD
220
CWD
1
uint16_t
2
0
º
GMXXXX – average corrected wind direction
N/A
AGRX_GMX_ACWD
221
ACWD
1
uint16_t
2
0
º
GMXXXX – compass
N/A
AGRX_GMX_CMPS
222
CMPS
1
uint16_t
2
0
º
GMXXXX – x tilt
N/A
AGRX_GMX_XT
223
XT
1
float
4
0
º
GMXXXX – y tilt
N/A
AGRX_GMX_YT
224
YT
1
float
4
0
º
GMXXXX – z orient
N/A
AGRX_GMX_ZO
225
ZO
1
float
4
0
1/-1
GMXXXX – supply voltage
N/A
AGRX_GMX_SVO
226
SVO
1
float
4
1
V
GMXXXX – status
N/A
AGRX_GMX_ST
227
ST
1
string
4
N/A
N/A
GMXXXX – Solar radiation
N/A
AGRX_GMX_SR
228
SR_WS
1
uint16_t
2
0
W/m²
GMXXXX – Solar sunshine hours
N/A
AGRX_GMX_SUNSHINE
229
SSH_WS
1
float
4
2
hours
GMXXXX – sunrise
N/A
AGRX_GMX_SUNRISE
230
SRT_WS
1
string
5
0
h:min
GMXXXX – solar noon
N/A
AGRX_GMX_SOLAR_NOON
231
SNT_WS
1
string
5
0
h:min
GMXXXX – sunset
N/A
AGRX_GMX_SUNSET
232
ST_WS
1
string
5
0
h:min
GMXXXX – position of the sun
N/A
AGRX_GMX_POS_SUN
233
PS_WS
1
string
7
0
º:º
GMXXXX – twilight civil
N/A
AGRX_GMX_TW_CIV
234
TC_WS
1
string
5
0
h:min
GMXXXX – twilight nautical
N/A
AGRX_GMX_TW_NAU
235
TN_WS
1
string
5
0
h:min
GMXXXX – twilight astronomical
N/A
AGRX_GMX_TW_AST
236
TA_WS
1
string
5
0
h:min
GMXXXX – Barometric pressure
N/A
AGRX_GMX_PRES
237
PRES_WS
1
float
4
1
hPa
GMXXXX – Pressure at sea level
N/A
AGRX_GMX_PRES_SEA
238
PRESSL_WS
1
float
4
1
hPa
GMXXXX – Pressure at station
N/A
AGRX_GMX_PRES_STA
239
PRESS_WS
1
float
4
1
hPa
GMXXXX – Relative humidity
N/A
AGRX_GMX_RH
240
RH_WS
1
uint16_t
2
0
%
GMXXXX – Air temperature
N/A
AGRX_GMX_TEMP
241
TEM_WS
1
float
4
1
ºC
GMXXXX – dewpoint
N/A
AGRX_GMX_DEWP
242
DP_WS
1
float
4
1
ºC
GMXXXX – Absolute Humidity
N/A
AGRX_GMX_AH
243
AH_WS
1
float
4
2
gm-3
GMXXXX – Air density
N/A
AGRX_GMX_AD
244
AD_WS
1
float
4
1
Kgm-3
GMXXXX – Wet Bulb temperature
N/A
AGRX_GMX_WBT
245
WBT_WS
1
float
4
1
ºC
GMXXXX – Wind chill
N/A
AGRX_GMX_WC
246
WC_WS
1
float
4
0
ºC
GMXXXX – Heat Index
N/A
AGRX_GMX_HI
247
HI_WS
1
uint16_t
2
0
ºC
GMXXXX – Corrected Speed
N/A
AGRX_GMX_GPS_CSP
248
GPS_CSP
1
float
4
2
m/s
GMXXXX – Average corrected Speed
N/A
AGRX_GMX_GPS_ACS
249
GPS_ACSP
1
float
4
2
m/s
GMXXXX – Corrected Gust speed
N/A
AGRX_GMX_GPS_CGS
250
GPS_GSP
1
float
4
2
m/s
GMXXXX – Corrected gust direction
N/A
AGRX_GMX_GPS_CGD
251
GPS_GDIR
1
uint16_t
2
0
º
GMXXXX – GPS location (lat / long)
N/A
AGRX_GMX_GPS_LOC
252
GPS_LOC
1
string
28
0
º:º:m
GMXXXX – GPS heading
N/A
AGRX_GMX_GPS_HEA
253
GPS_H
1
uint16_t
2
0
º
GMXXXX – Speed
N/A
AGRX_GMX_GPS_SPEED
254
GPS_SP
1
float
4
2
m/s
GMXXXX – GPS status
N/A
AGRX_GMX_GPS_STATUS
255
GPS_ST
1
string
4
0
N/A
Sensor
Sensor Reference
Sensor TAG
SENSOR ID - Binary
SENSOR ID - ASCII
Number of Fields
Binary - Type of variable
Binary - Size per Field (Bytes)
ASCII - Default Decimal Precision
Units
OPTOD - Temperature socket A
9488-P
WTRX_OPTOD_TC1_A
12
TC1_A
1
float
4
2
ºC
OPTOD - Temperature socket B
9488-P
WTRX_OPTOD_TC1_B
13
TC1_B
1
float
4
2
ºC
OPTOD - Temperature socket C
9488-P
WTRX_OPTOD_TC1_C
14
TC1_C
1
float
4
2
ºC
OPTOD - Temperature socket D
9488-P
WTRX_OPTOD_TC1_D
15
TC1_D
1
float
4
2
ºC
OPTOD - Temperature socket E
9488-P
WTRX_OPTOD_TC1_E
16
TC1_E
1
float
4
2
ºC
OPTOD - Oxygen % saturation socket A
9488-P
WTRX_OPTOD_OS_A
17
OS_A
1
float
4
2
%
OPTOD - Oxygen % saturation socket B
9488-P
WTRX_OPTOD_OS_B
18
OS_B
1
float
4
2
%
OPTOD - Oxygen % saturation socket C
9488-P
WTRX_OPTOD_OS_C
19
OS_C
1
float
4
2
%
OPTOD - Oxygen % saturation socket D
9488-P
WTRX_OPTOD_OS_D
20
OS_D
1
float
4
2
%
OPTOD - Oxygen % saturation socket E
9488-P
WTRX_OPTOD_OS_E
21
OS_E
1
float
4
2
%
OPTOD - Oxygen mg/L saturation socket A
9488-P
WTRX_OPTOD_OM_A
22
OM_A
1
float
4
2
mg/l
OPTOD - Oxygen mg/L saturation socket B
9488-P
WTRX_OPTOD_OM_B
23
OM_B
1
float
4
2
mg/l
OPTOD - Oxygen mg/L saturation socket C
9488-P
WTRX_OPTOD_OM_C
24
OM_C
1
float
4
2
mg/l
OPTOD - Oxygen mg/L saturation socket D
9488-P
WTRX_OPTOD_OM_D
25
OM_D
1
float
4
2
mg/l
OPTOD - Oxygen mg/L saturation socket E
9488-P
WTRX_OPTOD_OM_E
26
OM_E
1
float
4
2
mg/l
OPTOD - Oxygen ppm saturation socket A
9488-P
WTRX_OPTOD_OP_A
27
OP_A
1
float
4
2
ppm
OPTOD - Oxygen ppm saturation socket B
9488-P
WTRX_OPTOD_OP_B
28
OP_B
1
float
4
2
ppm
OPTOD - Oxygen ppm saturation socket C
9488-P
WTRX_OPTOD_OP_C
29
OP_C
1
float
4
2
ppm
OPTOD - Oxygen ppm saturation socket D
9488-P
WTRX_OPTOD_OP_D
30
OP_D
1
float
4
2
ppm
OPTOD - Oxygen ppm saturation socket E
9488-P
WTRX_OPTOD_OP_E
31
OP_E
1
float
4
2
ppm
PHEHT – Temperature socket A
9485-P
WTRX_PHEHT_TC2_A
134
TC2_A
1
float
4
2
ºC
PHEHT – Temperature socket B
9485-P
WTRX_PHEHT_TC2_B
135
TC2_B
1
float
4
2
ºC
PHEHT – Temperature socket C
9485-P
WTRX_PHEHT_TC2_C
136
TC2_C
1
float
4
2
ºC
PHEHT – Temperature socket D
9485-P
WTRX_PHEHT_TC2_D
137
TC2_D
1
float
4
2
ºC
PHEHT – Temperature socket E
9485-P
WTRX_PHEHT_TC2_E
138
TC2_E
1
float
4
2
ºC
PHEHT – pH socket A
9485-P
WTRX_PHEHT_PH_A
139
PH_A
1
float
4
2
pH
PHEHT – pH socket B
9485-P
WTRX_PHEHT_PH_B
140
PH_B
1
float
4
2
pH
PHEHT – pH socket C
9485-P
WTRX_PHEHT_PH_C
141
PH_C
1
float
4
2
pH
PHEHT – pH socket D
9485-P
WTRX_PHEHT_PH_D
142
PH_D
1
float
4
2
pH
PHEHT – pH socket E
9485-P
WTRX_PHEHT_PH_E
143
PH_E
1
float
4
2
pH
PHEHT – Redox socket A
9485-P
WTRX_PHEHT_RX_A
144
RX_A
1
float
4
2
mV
PHEHT – Redox socket B
9485-P
WTRX_PHEHT_RX_B
145
RX_B
1
float
4
2
mV
PHEHT – Redox socket C
9485-P
WTRX_PHEHT_RX_C
146
RX_C
1
float
4
2
mV
PHEHT – Redox socket D
9485-P
WTRX_PHEHT_RX_D
147
RX_D
1
float
4
2
mV
PHEHT – Redox socket E
9485-P
WTRX_PHEHT_RX_E
148
RX_E
1
float
4
2
mV
PHEHT – pHMV socket A
9485-P
WTRX_PHEHT_PM_A
149
PM_A
1
float
4
2
mV
PHEHT – pHMV socket B
9485-P
WTRX_PHEHT_PM_B
150
PM_B
1
float
4
2
mV
PHEHT – pHMV socket C
9485-P
WTRX_PHEHT_PM_C
151
PM_C
1
float
4
2
mV
PHEHT – pHMV socket D
9485-P
WTRX_PHEHT_PM_D
152
PM_D
1
float
4
2
mV
PHEHT – pHMV socket E
9485-P
WTRX_PHEHT_PM_E
153
PM_E
1
float
4
2
mV
C4E – Temperature socket A
9486-P
WTRX_C4E_TC3_A
154
TC3_A
1
float
4
2
ºC
C4E – Temperature socket B
9486-P
WTRX_C4E_TC3_B
155
TC3_B
1
float
4
2
ºC
C4E – Temperature socket C
9486-P
WTRX_C4E_TC3_C
156
TC3_C
1
float
4
2
ºC
C4E – Temperature socket D
9486-P
WTRX_C4E_TC3_D
157
TC3_D
1
float
4
2
ºC
C4E – Temperature socket E
9486-P
WTRX_C4E_TC3_E
158
TC3_E
1
float
4
2
ºC
C4E – Conductivity socket A
9486-P
WTRX_C4E_CN_A
159
CN_A
1
float
4
2
μS/cm
C4E – Conductivity socket B
9486-P
WTRX_C4E_CN_B
160
CN_B
1
float
4
2
μS/cm
C4E – Conductivity socket C
9486-P
WTRX_C4E_CN_C
161
CN_C
1
float
4
2
μS/cm
C4E – Conductivity socket D
9486-P
WTRX_C4E_CN_D
162
CN_D
1
float
4
2
μS/cm
C4E – Conductivity socket E
9486-P
WTRX_C4E_CN_E
163
CN_E
1
float
4
2
μS/cm
C4E – Salinity socket A
9486-P
WTRX_C4E_SA_A
164
SA_A
1
float
4
2
ppt
C4E – Salinity socket B
9486-P
WTRX_C4E_SA_B
165
SA_B
1
float
4
2
ppt
C4E – Salinity socket C
9486-P
WTRX_C4E_SA_C
166
SA_C
1
float
4
2
ppt
C4E – Salinity socket D
9486-P
WTRX_C4E_SA_D
167
SA_D
1
float
4
2
ppt
C4E – Salinity socket E
9486-P
WTRX_C4E_SA_E
168
SA_E
1
float
4
2
ppt
C4E – Total dissolved solids socket A
9486-P
WTRX_C4E_TD_A
169
TD_A
1
float
4
2
ppm
C4E – Total dissolved solids socket B
9486-P
WTRX_C4E_TD_B
170
TD_B
1
float
4
2
ppm
C4E – Total dissolved solids socket C
9486-P
WTRX_C4E_TD_C
171
TD_C
1
float
4
2
ppm
C4E – Total dissolved solids socket D
9486-P
WTRX_C4E_TD_D
172
TD_D
1
float
4
2
ppm
C4E – Total dissolved solids socket E
9486-P
WTRX_C4E_TD_E
173
TD_E
1
float
4
2
ppm
NTU – Temperature socket A
9353-PX
WTRX_NTU_TC4_A
174
TC4_A
1
float
4
2
ºC
NTU – Temperature socket B
9353-PX
WTRX_NTU_TC4_B
175
TC4_B
1
float
4
2
ºC
NTU – Temperature socket C
9353-PX
WTRX_NTU_TC4_C
176
TC4_C
1
float
4
2
ºC
NTU – Temperature socket D
9353-PX
WTRX_NTU_TC4_D
177
TC4_D
1
float
4
2
ºC
NTU – Temperature socket E
9353-PX
WTRX_NTU_TC4_E
178
TC4_E
1
float
4
2
ºC
NTU – Turbidity NTU socket A
9353-PX
WTRX_NTU_TN_A
179
TN_A
1
float
4
2
NTU
NTU – Turbidity NTU socket B
9353-PX
WTRX_NTU_TN_B
180
TN_B
1
float
4
2
NTU
NTU – Turbidity NTU socket C
9353-PX
WTRX_NTU_TN_C
181
TN_C
1
float
4
2
NTU
NTU – Turbidity NTU socket D
9353-PX
WTRX_NTU_TN_D
182
TN_D
1
float
4
2
NTU
NTU – Turbidity NTU socket E
9353-PX
WTRX_NTU_TN_E
183
TN_E
1
float
4
2
NTU
NTU – Turbidity MGL socket A
9353-PX
WTRX_NTU_TM_A
184
TM_A
1
float
4
2
mg/l
NTU – Turbidity MGL socket B
9353-PX
WTRX_NTU_TM_B
185
TM_B
1
float
4
2
mg/l
NTU – Turbidity MGL socket C
9353-PX
WTRX_NTU_TM_C
186
TM_C
1
float
4
2
mg/l
NTU – Turbidity MGL socket D
9353-PX
WTRX_NTU_TM_D
187
TM_D
1
float
4
2
mg/l
NTU – Turbidity MGL socket E
9353-PX
WTRX_NTU_TM_E
188
TM_E
1
float
4
2
mg/l
CTZN – Temperature socket A
9487-P
WTRX_CTZN_TC5_A
189
TC5_A
1
float
4
2
ºC
CTZN – Temperature socket B
9487-P
WTRX_CTZN_TC5_B
190
TC5_B
1
float
4
2
ºC
CTZN – Temperature socket C
9487-P
WTRX_CTZN_TC5_C
191
TC5_C
1
float
4
2
ºC
CTZN – Temperature socket D
9487-P
WTRX_CTZN_TC5_D
192
TC5_D
1
float
4
2
ºC
CTZN – Temperature socket E
9487-P
WTRX_CTZN_TC5_E
193
TC5_E
1
float
4
2
ºC
CTZN – Conductivity socket A
9487-P
WTRX_CTZN_CN1_A
194
CN1_A
1
float
4
2
mS/cm
CTZN – Conductivity socket B
9487-P
WTRX_CTZN_CN1_B
195
CN1_B
1
float
4
2
mS/cm
CTZN – Conductivity socket C
9487-P
WTRX_CTZN_CN1_C
196
CN1_C
1
float
4
2
mS/cm
CTZN – Conductivity socket D
9487-P
WTRX_CTZN_CN1_D
197
CN1_D
1
float
4
2
mS/cm
CTZN – Conductivity socket E
9487-P
WTRX_CTZN_CN1_E
198
CN1_E
1
float
4
2
mS/cm
CTZN – Salinity socket A
9487-P
WTRX_CTZN_SA1_A
199
SA1_A
1
float
4
2
ppt
CTZN – Salinity socket B
9487-P
WTRX_CTZN_SA1_B
200
SA1_B
1
float
4
2
ppt
CTZN – Salinity socket C
9487-P
WTRX_CTZN_SA1_C
201
SA1_C
1
float
4
2
ppt
CTZN – Salinity socket D
9487-P
WTRX_CTZN_SA1_D
202
SA1_D
1
float
4
2
ppt
CTZN – Salinity socket_E
9487-P
WTRX_CTZN_SA1_E
203
SA1_E
1
float
4
2
ppt
CTZN – Conductivity not compensated socket A
9487-P
WTRX_CTZN_CU_A
204
CU_A
1
float
4
2
mS/cm
CTZN – Conductivity not compensated socket B
9487-P
WTRX_CTZN_CU_B
205
CU_B
1
float
4
2
mS/cm
CTZN – Conductivity not compensated socket C
9487-P
WTRX_CTZN_CU_C
206
CU_C
1
float
4
2
mS/cm
CTZN – Conductivity not compensated socket D
9487-P
WTRX_CTZN_CU_D
207
CU_D
1
float
4
2
mS/cm
CTZN – Conductivity not compensated socket E
9487-P
WTRX_CTZN_CU_E
208
CU_E
1
float
4
2
mS/cm
MES5 – Temperature socket A
9490-P
WTRX_MES5_TC6_A
209
TC6_A
1
float
4
2
ºC
MES5 – Temperature socket B
9490-P
WTRX_MES5_TC6_B
210
TC6_B
1
float
4
2
ºC
MES5 – Temperature socket C
9490-P
WTRX_MES5_TC6_C
211
TC6_C
1
float
4
2
ºC
MES5 – Temperature socket D
9490-P
WTRX_MES5_TC6_D
212
TC6_D
1
float
4
2
ºC
MES5 – Temperature socket E
9490-P
WTRX_MES5_TC6_E
213
TC6_E
1
float
4
2
ºC
MES5 – Sludge Blanket socket A
9490-P
WTRX_MES5_SB_A
214
SB_A
1
float
4
2
%
MES5 – Sludge Blanket socket B
9490-P
WTRX_MES5_SB_B
215
SB_B
1
float
4
2
%
MES5 – Sludge Blanket socket C
9490-P
WTRX_MES5_SB_C
216
SB_C
1
float
4
2
%
MES5 – Sludge Blanket socket D
9490-P
WTRX_MES5_SB_D
217
SB_D
1
float
4
2
%
MES5 – Sludge Blanket socket E
9490-P
WTRX_MES5_SB_E
218
SB_E
1
float
4
2
%
MES5 – Suspended solids socket A
9490-P
WTRX_MES5_SS_A
219
SS_A
1
float
4
2
g/L
MES5 – Suspended solids socket B
9490-P
WTRX_MES5_SS_B
220
SS_B
1
float
4
2
g/L
MES5 – Suspended solids socket C
9490-P
WTRX_MES5_SS_C
221
SS_C
1
float
4
2
g/L
MES5 – Suspended solids socket D
9490-P
WTRX_MES5_SS_D
222
SS_D
1
float
4
2
g/L
MES5 – Suspended solids socket E
9490-P
WTRX_MES5_SS_E
223
SS_E
1
float
4
2
g/L
MES5 – Turbidity FAU socket A
9490-P
WTRX_MES5_TF_A
224
TFA_A
1
float
4
2
FAU
MES5 – Turbidity FAU socket B
9490-P
WTRX_MES5_TF_B
225
TFA_B
1
float
4
2
FAU
MES5 – Turbidity FAU socket C
9490-P
WTRX_MES5_TF_C
226
TFA_C
1
float
4
2
FAU
MES5 – Turbidity FAU socket D
9490-P
WTRX_MES5_TF_D
227
TFA_D
1
float
4
2
FAU
MES5 – Turbidity FAU socket E
9490-P
WTRX_MES5_TF_E
228
TFA_E
1
float
4
2
FAU
VegaPuls C21 – Distance socket A
9513-P
WTRX_C21_DIS_A
229
DIS_A
1
float
4
3
m
VegaPuls C21 – Distance socket B
9513-P
WTRX_C21_DIS_B
230
DIS_B
1
float
4
3
m
VegaPuls C21 – Distance socket C
9513-P
WTRX_C21_DIS_C
231
DIS_C
1
float
4
3
m
VegaPuls C21 – Distance socket D
9513-P
WTRX_C21_DIS_D
232
DIS_D
1
float
4
3
m
VegaPuls C21 – Temperature socket A
9513-P
WTRX_C21_TC7_A
233
TC7_A
1
float
4
1
ºC
VegaPuls C21 – Temperature socket B
9513-P
WTRX_C21_TC7_B
234
TC7_B
1
float
4
1
ºC
VegaPuls C21 – Temperature socket C
9513-P
WTRX_C21_TC7_C
235
TC7_C
1
float
4
1
ºC
VegaPuls C21 – Temperature socket D
9513-P
WTRX_C21_TC7_D
236
TC7_D
1
float
4
1
ºC
Manta – PH socket F
9503-P
WTRX_MANTA_PH_F
32
EM_PH
1
float
4
2
pH
Manta – ORP socket F
9503-P
WTRX_MANTA_ORP_F
33
EM_ORP
1
float
4
2
mV
Manta – Depth socket F
9503-P
WTRX_MANTA_DEPTH_F
34
EM_DEPTH
1
float
4
2
m
Manta – Conductance socket F
9503-P
WTRX_MANTA_COND_F
35
EM_COND
1
float
4
2
uS/cm
Manta – CHL socket F
9503-P
WTRX_MANTA_CHL_F
36
EM_CHL
1
float
4
2
ug/l
Manta – NH4 socket F
9503-P
WTRX_MANTA_NH4_F
37
EM_NH4
1
float
4
2
mg/l
Manta – NO3 socket F
9503-P
WTRX_MANTA_NO3_F
38
EM_NO3
1
float
4
2
mg/l
Manta – CL socket F
9503-P
WTRX_MANTA_CL_F
39
EM_CL
1
float
4
2
mg/l
Manta – HDO socket F
9503-P
WTRX_MANTA_HDO_F
40
EM_HDO
1
float
4
2
mg/l
Manta – Temperature socket F
9503-P
WTRX_MANTA_TC_F
41
EM_TC
1
float
4
2
ºC
Manta – Turbidity socket F
9503-P
WTRX_MANTA_TURB_F
237
EM_TURB
1
float
4
2
FNU
Manta – BGA socket F
9503-P
WTRX_MANTA_BGA_F
238
EM_BGA
1
float
4
2
ppb
4Figure. Field types for Smart Water Xtreme