RSA 01: RSA Encryption
This example calculates an encrypted message using the RSA algorithm. For encryption, only the public key is needed. The public key is determined by the modulus and the exponent. The "public key" is (n,e). Where 'n' is the modulus and 'e' is the exponent of the public key.
Required Materials
1 x Waspmote 1 x Battery
Notes
- The battery has to be connected. - This example can be executed in Waspmote v12 and Waspmote v15
Code
/*
* ------ RSA 01 - Calculate encrypted message with RSA --------
*
* Explanation: This example calculates an encrypted message
* using the RSA algorithm. For encryption, only the public key is needed.
* The public key is determined by the modulus and the exponent.
* The "public key" is (n,e). Where 'n' is the modulus and 'e' is the
* exponent of the public key.
*
* Copyright (C) 2016 Libelium Comunicaciones Distribuidas S.L.
* http://www.libelium.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Version: 3.0
* Design: David Gascon
* Implementation: Alvaro Gonzalez, Yuri Carmona
*/
#include "WaspRSA.h"
// 1. Declaration of Public key variables
char modulus[] =
"7ebd3e97454cc46ebcf758a5b0b1ddfc" \
"4775878048968cf3b2aaa0e34b8b0553" \
"15005c21a4e31404ebe82485ee114918" \
"8a5b96605c3f4437ef7deeff30a5eaa4" \
"af944c4405a1c3ac1f0d54453194f212" \
"ea50d6c04aee07b1c8c9a37661ad9126" \
"604f754f7270503f7b61fa7b72367cac" \
"7c871203caa31d77aa0616571ecf388b" ;
// define exponent for public key 'e'
// This key is defined as HEX format:
// 0x00010001 = 65537 which is a prime number
char public_exponent[] = "00010001";
// 2. Declaration message to encrypt. In the example,
// 'message' stands for the HEX representation of "Libelium"
char message[] = "4C6962656C69756D";
// 3. variable to store the encrypted message
char enc_message[300];
void setup()
{
USB.ON();
USB.println(F("Example RSA_01\n"));
USB.print(F("message:"));
USB.println(message);
USB.println();
USB.print(F("public_exponent:"));
USB.println(public_exponent);
USB.println();
USB.println(F("public_modulus:"));
RSA.printMessage(modulus);
USB.println();
}
void loop()
{
// Calculating encrypted message
RSA.encrypt(message
, public_exponent
, modulus
, enc_message
, sizeof(enc_message));
USB.println(F("-------------------------"));
USB.println(F("Encrypted message:"));
USB.println(F("-------------------------"));
RSA.printMessage(enc_message);
USB.println(F("-------------------------"));
USB.println(F("-------------------------"));
USB.print(F("Encrypted length:"));
USB.println((int)strlen(enc_message));
USB.println(F("-------------------------"));
USB.println();
delay(10000);
}
Output
H#
Example RSA_01
message:4C6962656C69756D
public_exponent:00010001
public_modulus:
7ebd3e97454cc46ebcf758a5b0b1ddfc
4775878048968cf3b2aaa0e34b8b0553
15005c21a4e31404ebe82485ee114918
8a5b96605c3f4437ef7deeff30a5eaa4
af944c4405a1c3ac1f0d54453194f212
ea50d6c04aee07b1c8c9a37661ad9126
604f754f7270503f7b61fa7b72367cac
7c871203caa31d77aa0616571ecf388b
-------------------------
Encrypted message:
-------------------------
275952BC689E5B62514F5A243B09C5D4
4931C070A86E2E8E7795EBE27AC7E63E
49332B50926B1F9CCE9991DE95AAE49C
C9A8CC359109FDD3EEB1C123F53861F0
D42AAFCFBC4EAB639AEF55BB56430317
689581CE4570A45E4470F40876B98E9F
FFD067A66FE75220DD12DD6CAA1CF89A
499762D4106368
Last updated